
CHAPTER

ELEVEN

ACTORS

The Actor model takes the theme of object-oriented computation seriously and

to an extreme. In an Actor system, everything is an actor (object). Actors com-

municate by sending each other messages. These messages are themselves actors.

Carl Hewitt and his colleagues at M.I.T. are developing the Actor model.

Their work is devoted to re�ning the Actor concept, providing a formal semantics

for Actor computations, and building programming systems that embody Actor

principles. Our discussion of Actors focuses on two of these issues. Our �rst

concern is the Actor metaphor|the philosophical consequences of treating all

parts of a programming system uniformly. The remainder of this section deals

with the semantics and implementation of Actor systems.

Data Abstraction

In Section 2-2 we introduced the idea of data abstraction|that the logical ap-

pearance of a program's data can be made independent of its physical implemen-

tation. Most abstraction mechanisms are designed for manipulating general data

structures such as stacks, queues, and trees. Within each abstract object, con-

ventional programming techniques are used to describe its behavior. The Actor

metaphor extends the idea of abstraction to assert that all programming con-

structs are objects (actors), be they as simple as \the number 5," as functional

as \factorial," or as complex as \this intelligent program."
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Actor Theory

There are three kinds of actors: primitive actors, unserialized actors, and seri-

alized actors. Primitive actors correspond to the data and procedure primitives

of the computer system. For example, integer 5 and function + are primitive

actors. Nonprimitive actors combine state and procedure. Serialized actors di�er

from unserialized actors in that serialized actors have local state that the actor

itself can change, while unserialized actors cannot change their local state. A

typical unserialized actor is factorial. Factorial can be implemented in terms of

other primitive and unserialized actors, such as true, 1, and, recursively, facto-
rial. A serialized actor associates local storage (state) with function. A typical

serialized actor is a register that remembers the last value sent it. Such an actor

retains its states between message receptions. Serialized actors process messages

serially|one at a time.

Actors communicate by sending each other messages. An actor with a task

for another actor to perform composes a message describing that task and sends

that message to the other actor, the target of the message. At some time in

the computational future, the message arrives at the target. At some time after

its arrival, the message is accepted ; its processing commences. An actor's behav-

ior describes which messages the actor accepts and how it responds to those

messages. Of course, messages are themselves actors, created by the primitive

create-unserialized-actor actor.

One important class of actors is continuations [Reynolds 72; Strachey 74].

(Hewitt calls these customer or complaint box actors.) Continuations are ac-

tors that are sent as part of a message and that are intended (in certain cir-

cumstances) to extend part of the computation. Typically, an actor sends the

result of its processing to a continuation. Since continuations are actors and

all parts of messages are actors, messages can naturally include multiple con-

tinuations | perhaps one continuation to be sent the results of an error-free

computation, another to be informed of syntax errors, and a third to handle

exceptional machine conditions. A primitive, machine-oriented way of thinking

about continuations is as a program-counter address combined with a set of

registers. Sending a message to a continuation is like jumping to that address|

a 
exible form of computed-GOTO. Unlike Fortran's archetypical computed-

GOTO, the range of possible continuations does not have to be speci�ed before

execution. In practice, it is more common to compose a continuation immedi-

ately before sending a message than it is to use a prede�ned one. Continuations

are so powerful a control operation that they have been called \the ultimate

GOTO" [Steele 77].

Every actor has a script (program) and acquaintances (data, local storage).

When a message arrives at an actor, the actor's script is applied to that mes-

sage. For example, primitive actor 1 accepts messages like \add yourself to 3,
and send the answer to actor G0042." The script for actor 1 includes programs

for handling addition messages, subtraction messages, multiplication messages,
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equality messages, and printing messages. The script for a cell actor would in-

clude programs for handling value-setting messages, value-getting messages, and

printing messages.

Primitive actors represent the primitive data objects of an actor system.

Typical primitive actors include the integers and booleans. Each of primitive

actors true and false has an important line in its script that handles messages of

the form \if you are true then respond with thenval otherwise respond with elseval
sending the answer to continuation." When actor true accepts such a message,

it sends thenval to continuation; actor false sends elseval to continuation. That
is, there is no conditional function. Instead, actors true and false know how to

handle messages keyed to if. This parallels the lambda calculus, where true and

false are functions (Section 1-2).

Unserialized actors are simply descriptions of functions. They compute their

values by sending messages (with the right continuations) to other actors. Se-

rialized actors are more powerful. They have both program (script) and local

storage (acquaintances). When a serialized actor accepts a message, it becomes

locked against further messages. One thing a locked serialized actor can do is

become another actor. It unlocks in the process of \becoming." For example,

a cell (register) actor might respond to messages of the form get with (actor)

3. On accepting a message telling it to set itself to 5, it locks. Its script then

tells it to become the actor that responds to get messages with 5. The act of

becoming this new actor unlocks the cell. The underlying system ensures that

messages do not reach a locked actor. The locking of an actor on receipt of a

message causes messages to be processed one at a time, that is, serially. Seri-

alized actors do not behave as functions (in the mathematical sense)|they do

not always respond to the same message with the same behavior. In a typical

implementation, the underlying actor system would keep a queue of the messages

that have arrived at a serialized actor. Hardware arbiters would determine an

ordering on this queue. In Actor systems (just as in any postal service), the order

in which two messages were sent is not necessarily the same as the order in which

they arrive.

Serialized actors are created by sending a message to actor create-serialized-

actor. This is equivalent to process creation. Sending a message to an actor is

process activation. Concurrency in an Actor system arises when, after receiving

a message, an actor sends several messages. Concurrency is reduced by an actor

that receives a message and does not send any others.

Actor theory has several other rules for actor behavior. All actors have unique

names. Actors start processing when they receive a message. Actor languages pre-

clude iteration. Instead, repetition is achieved by having actors send themselves

messages or by including themselves in the continuations of their messages. This

last restriction has three signi�cant consequences: (1) the evaluation of the code

of any actor is �nite; (2) the underlying system has the opportunity to interleave

the evaluations of di�erent actors and di�erent messages; and (3) no message

reception generates an unbounded (in�nite) number of messages. Actor systems
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(1) If an event E1 precedes an event E2, then only a �nite number of events occurred between

them.

(2) No event can immediately cause more than a �nite number of events.

(3) Each event is generated by the sending of at most a single message.

(4) Of any two messages sent to an actor, one precedes the other in arrival order.

(5) The event ordering is well-founded (one can always take a �nite number of \steps" back

to the initial event).

(6) Only a �nite number of actors can be created as an immediate result of a single event.

(7) An actor has a �nite number of acquaintances at any time. Acquaintances are the actors

to which it can send messages. An actor's acquaintances when processing a message are

the union of its own acquaintances and the acquaintances of the message.

Figure 11-1 Laws for Actor systems.

do not guarantee the \prompt" delivery of messages, only their eventual delivery

and processing. Thus, Actors support weak fairness.

Hewitt and Baker [Hewitt 77b] call the acceptance of a message by an actor

an event. The intended semantics of Actor systems can be better understood by

examination of their laws for Actor systems, given in Figure 11-1. These laws are

meant to restrict Actor systems to those that can be physically implemented.

The general goal of the laws is to ensure that Actor systems can be simulated

by �nite permutation of primitive events. The �rst, second, third, �fth, and

sixth laws preclude possible loopholes to the �nite permutation rules. The fourth

law precludes simultaneity in Actor systems. The seventh law asserts that the

physical storage of an actor is always bounded (though nothing in the Actor laws

precludes that storage from growing during processing).

An important goal of the Actor work is universality. The Actor model is

intended to be able to model all aspects of a computing system's behavior, from

programs through processors and peripheral devices.

Actor terminology is confusing. There is a plethora of new names (such as

\actor," \message," \target," \behavior," \script," and \event") for concepts

that border on the familiar. The mystery is compounded by the assertion that

most of these are members of a single class of object, actors, which all obey the

same laws. In reality, the Actor metaphor is not as mysterious as the variety

of names would imply. Lisp programmers have long recognized that the same

structure can be put to many uses. A particular collection of cells and pointers

can serve as a static data structure, as an argument list for a function, or as the

code of the function itself. These are all bound together through the common

denominator of the cons cell|each is a type of cons cell structure. The Actor

metaphor is similar. When it asserts that \a message is also an actor," it is

arguing the Actor equivalent of \a function's argument list is built using the

Actor equivalent of cons."
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Actor Practice

The Actor metaphor is attractive. It promises a uniformity of abstraction that is

useful for real programming. One hopes that Actors will provide a release from

the atomicity of conventional programming systems. The programmer need not

determine the implementation of an object during design, only the form of its

messages. No variable or function is so �ne that it cannot be dynamically mod-

i�ed to exhibit a di�erent behavior. The granularity of the processing elements

in an Actor system is small enough to trace changes in the value of a single cell.

Hewitt and his colleagues have implemented several languages based on ac-

tors. The �rst was called Plasma; current systems include Act-1, Act-2, Omega,

and Ether (we discuss Ether in Section 18-3). They developed these languages

in a Lisp-based programming environment; their development drew on themes

from the lambda calculus, Lisp, and arti�cial intelligence. The notions of func-

tions as objects, lambda expressions, and continuations come from the lambda

calculus. The idea of implementing actors as serialized closures|i.e., function

code within a speci�ed environment waiting to be applied to (accept) a message,

is derived from Lisp.* And the concept of pattern-matched invocation|that the

script of an actor should be described as a set of patterns instead of a sequential

program|originated in arti�cial intelligence. Strangely enough, since pattern

matching is simply another syntax for conditional expressions, the resulting sys-

tem is remarkably similar to an applicative-order (call-by-value) lambda calculus

interpreter (with processes) in Lisp. It is important to ensure in an Actor-like

interpreter that the closures are correctly scoped.

Actors and the Lambda Calculus

What is the structure of an Actor implementation? In their description of the

programming language Scheme, Sussman and Steele write [Sussman 75, p. 39]:

This work developed out of an initial attempt to understand the actorness of Actors.

Steele thought he understood it, but couldn't explain it; Sussman suggested the experi-

mental approach of actually building an \Actors interpreter." This interpreter attempted

to intermix the use of actors and Lisp lambda expressions in a clean manner. When it was

completed, we discovered that the \actors" and the lambda-expressions were identical in

implementation. Once we had discovered this, all the rest fell into place, and it was only

natural to begin thinking about Actors in terms of lambda calculus.

The system that resulted from Sussman and Steele's work was the program-

ming language Scheme|a language that is almost a direct implementation of

the lambda calculus (with assignment statements) in Lisp (using lists and atoms

* In the past, closures have gone by the name \funargs" in the Lisp community. The

\thunks" used to implement call-by-name in languages such as Algol 60 are also versions

of closures [Ingerman 61].
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instead of the strings of the pure lambda calculus). Scheme also relies heavily on

closures. From a Scheme perspective, an actor's script is the closure expression

and the set of an actor's acquaintances is an environment. In fact, Scheme is not

Actors; even though Scheme can execute code isomorphic to Actor programs,

the system does not address the Actor concern for weak fairness.

In Actors, side e�ects are formalized and given a speci�c interpretation by

primitive serializers. This is particularly important in a distributed environment,

where the use of multiple sites obscures the notion of simultaneous state. Steele

discusses the mapping between lexically scoped Lisp and Actors in his paper,

\Lambda, the Ultimate Declarative" [Steele 76].

Actor Language Features

Hewitt and his colleagues have extended Plasma and Act-1 with several features.

They have primitives for delaying the processing of a message that creates an

actor until a message is sent to it (delay) and for running several actors concur-

rently, accepting the answer of whichever terminates �rst (race). Act-1 scripts

can be written so that message reception is done by pattern matching, instead of

sequential conditional expressions. They have also implemented the \description

system" Omega [Hewitt 80] that performs pattern matching and type checking

based on simple inference mechanisms.

Certain assumptions underlie the implementation of any Actor system. One

important concern is the recycling of resources. Actor systems assume the exis-

tence of a garbage collector that �nds and reclaims the storage of inaccessible

actors (as a Lisp system garbage collects inaccessible cons cells). The Actor

metaphor also has no explicit notion of time and no facility (except complaint

handlers) for handling communication failure. Instead, each actor must trust the

underlying system to ensure that all communications are faithfully delivered.

Hewitt and his students have developed the formal semantics of Actor com-

putations. Greif proved results about expressing Actor computations in terms

of events and behaviors [Greif 75] and Clinger de�ned the semantics of Actor

computations using power domains [Clinger 81].

Examples

Act-1 is a programming language with a well-de�ned and complicated syntax.

Some of its syntactic goals are intended to aid arti�cial intelligence research,

others to provide helpful functions for the system user. Act-1 is primarily a

synthesis of continuation passing, function application, and data abstraction. To

illustrate these ideas, we have chosen our own syntax; the commentary clari�es

those uses that are unfamiliar programming constructs. We give an example of a

syntactically correct, Act-1 program at the end of this section. Act-1's syntax is

characterized by its Lisp-like use of parentheses and its keyword-oriented pattern
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matching. In our examples, we preserve some of the keywords but remove many

of the parentheses.

Factorial Our �rst example presents an unserialized actor, factorial (adapted
from Hewitt [Hewitt 77a]). As actors have no loops, factorial is restricted to

iteration by recursion|sending a message to itself. The message factorial sends
itself has a continuation that embeds the original continuation sent the actor

inside the action it performs. Our pseudoactor language is a mixture of Algol,

Lisp, and the lambda calculus.

factorial � �m. - - The factorial actor takes a message m.

match m hn ci - - Pattern-match m with a number n and a

continuation c.

if n = 1
then (send c h1i) - - If n is 1, then send 1 to c. Send is similar to

Lisp's apply, except that in actors, the

matching is explicit.

else

if n > 1
then (send factorial h(n � 1) (�k.(send c hn * ki))i)

- - Otherwise, send factorial a message composed

of n�1 and a continuation which will multiply

n by the result of that factorial, and send the

result to c.

An actor wishing to have the factorial of 3 computed and the resulting answer

sent to continuation wantsanswer would invoke

(send factorial h3 wantsansweri)

This would be successively transformed to (we have primed the successive bound

variables for clarity)

(send factorial h2 (�k.(send wantsanswer h3 * ki))i)

(send factorial h1 (�k0.(send (�k.(send wantsanswer h3 * ki))
h2 * k0

i))i)

When factorial accepts a message whose integer part is 1, it sends 1 to the

continuation.

(send (�k0.(send (�k.(send wantsanswer h3 * ki))
h2 * k0i))

h1i)
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Applying that continuation to h1i replaces all occurrences of k0 bound by the

outer �k0 with 1 yielding

(send (�k.(send wantsanswer h3 * ki)) h2 * 1i)

Two times one is, of course, two. Sending that value to this continuation produces

the result

(send wantsanswer h3 * 2i)

(send wantsanswer h6i)

Hence, actor wantsanswer is to be sent the message whose only element is 6.
Fortunately, 3! = 6. The factorial actor computes iteratively by passing contin-

uations. This solution avoids the arbitrarily deep stack required by a recursive

solution. Instead, it creates an arbitrarily complex continuation. (We have simpli-

�ed the program by treating multiplication and conditionals as primitive, instead

of explicitly detailing their expansion by the primitive actors.)

Bank account A serialized actor can have permanent storage. We present an

example of a part of a banking system, a serialized actor called an account
[Hewitt 79]. An account has one permanent storage �eld, its balance. An account
actor responds to deposit messages that add to its balance and to withdrawal
messages that try to decrease it. The account actor bounces withdrawals that

would leave it with negative funds.

account [balance] � �m.
match m h\withdrawal" - - A message whose �rst element is the word

\withdrawal"

n - - second a number n

ci - - and third a continuation c.

if balance > n then - - If the balance is su�cient to cover this

withdrawal,

parbegin - - do these things in parallel:

(send c h\transaction completed"i)
- - send an acknowledgment

(become account (balance�n))
- - and transform into an account with balance of

(balance�n).

parend

else - - If there are insu�cient funds

parbegin

(send c h\overdraft"i)
(become account balance) - - perform an identity

transformation.

parend;
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match m h\deposit" - - If the message matches with a message whose �rst

element is deposit

n - - second is a number n

ci - - and third is a continuation c, then accept the

deposit.

parbegin

(send c h\transaction completed"i)
(become account (balance + n))

- - This actor becomes one whose new balance is

(balance+n).

parend

This actor responds to two kinds of messages: Messages of the form h\withdrawal"
n ci request that n units be withdrawn from the account, and a con�rmation

of this action sent to c. The behavior of the actor depends on the balance of

the account and the size of the withdrawal. Messages of the form h\deposit"
n ci increase the balance by n, and send a con�rmation to c. In either case,

(serialized) actor account is transformed into an account with the new balance.*

Actor account, written in Act-1 (from [Hewitt 82]), is as follows:

(defaction (new account (with balance =b))
(create

(is-request (a deposit (with amount =n)) do
(become (new account (with balance (+ b n))))
(reply (a deposit-receipt (with amount n))))

(is-request (a withdrawal (with amount =n)) do
(if (< b n)

(then do (complain (an overdraft)))
(else do

(become (new account (with balance (� b n))))
(reply (a withdrawal-receipt (with amount n))))))

(is-request (a balance) do (reply b))))

Perspective

The Actor metaphor provides uniform, independent entities that communicate

through message passing and continuations. This is a powerful and rewarding

theme. In Section 18-3 we touch on some control organizations that conform to

this model.

* One creates an account actor by sending a request to create serialized actor, the sys-

tem storage allocation function.
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PROBLEMS

11-1 Design an airline reservation system using the Actors model. Have your system keep a

waiting list of passengers denied reservations. Inform the appropriate waiting passengers on

cancellations.

11-2 Demonstrate how to write standard control structures such as while, repeat, and loops

with multiple-level exits using Actors.

11-3 Write the program of an actor that behaves as a two-�eld cell, responding to messages

that set and return the values of each �eld. Such an actor is similar to a Lisp cons cell.
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